Spherical flow diagram with finite hyperbolic chain-recurrent set

نویسندگان

چکیده

In this paper, authors examine flows with a finite hyperbolic chain-recurrent set without heteroclinic intersections on arbitrary closed n-manifolds. For such flows, the existence of dual attractor and repeller is proved. These points are separated by (n−1)-dimensional sphere, which secant for wandering trajectories in complement to repeller. The study flow dynamics makes it possible obtain topological invariant, called spherical scheme, consisting multi-dimensional spheres that sphere invariant saddle manifolds. It worth known some classes scheme complete invariant. Thus, follows from G. Fleitas results polar (with single sink source) surface, equivalence

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean, Spherical and Hyperbolic Trigonometry

This is a collection of some standard formulae from Euclidean, spherical and hyperbolic trigonometry, including some standard models of the hyperbolic plane. Proofs are not given.

متن کامل

Spherical Indentation and Flow Property Measurement-Finite Element Simulation

Previous work by Au, Lucas, Sheckerd & Odette [1] and Haggag and Lucas [2] and others showed that ball indentation testing techniques can be used to evaluate flow properties. More recently Haggag et al [3] have extended and refined the general approach. This work is aimed at assessing the accuracy and reliability of this method based on finite element analysis (FEA) simulations of the ball inde...

متن کامل

A Cantor Set with Hyperbolic Complement

We construct a Cantor set in S3 whose complement admits a complete hyperbolic metric.

متن کامل

The hyperbolic Voronoi diagram in arbitrary dimension

We show that in the Klein projective ball model of hyperbolic space, the hyperbolic Voronoi diagram is affine and amounts to clip a corresponding power diagram, requiring however algebraic arithmetic. By considering the lesser-known Beltrami hemisphere model of hyperbolic geometry, we overcome the arithmetic limitations of Klein construction. Finally, we characterize the bisectors and geodesics...

متن کامل

Recognition of the Spherical Laguerre Voronoi Diagram

In this paper, we construct an algorithm for determining whether a given tessellation on a sphere is a spherical Laguerre Voronoi diagram or not. For spherical Laguerre tessellations, not only the locations of the Voronoi generators, but also their weights are required to recover. However, unlike the ordinary spherical Voronoi diagram, the generator set is not unique, which makes the problem di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Žurnal Srednevolžskogo matemati?eskogo ob?estva

سال: 2022

ISSN: ['2587-7496', '2079-6900']

DOI: https://doi.org/10.15507/2079-6900.24.202202.132-140